SOME BILINEAR GENERATING RELATIONS INVOLVING CLASSICAL HERMITE POLYNOMIALS VIA MEHLER'S FORMULA

Chaudhary Wali Mohd., M.I. Qureshi, Deepak Kumar Kabra* and Shabana Khan
Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi-110025, INDIA. E-mails: chaudhary.walimohd@gmail.com, miqureshi_delhi@yahoo.co.in, areenamalik30@gmail.com
*Department of Basic \& Applied Sciences, M. L. V. Textile \& Engineering College, Bhilwara, Rajasthan-311001, INDIA.
E-mail: dkabra20@gmail.com

(Received: August 04, 2017)
Abstract: In this paper, using series decomposition technique in Mehler's formula, we obtain some bilinear generating relations associated with classical Hermite's polynomials of even and odd degree.

Keywords and Phrases: Mehler's formula, Classical Hermite's polynomials, Decomposition technique.
2010 Mathematics Subject Classification: Primary: 33C45; Secondary: 33C05. 1. Introduction and preliminaries

Throughout in present paper, we use the following standard notations:
$\mathbb{N}:=\{1,2,3, \ldots\}, \mathbb{N}_{0}:=\{0,1,2,3, \ldots\}=\mathbb{N} \cup\{0\}$ and $\mathbb{Z}^{-}:=\{-1,-2,-3, \ldots\}=$ $\mathbb{Z}_{0}^{-} \backslash\{0\}$. Here, as usual, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, \mathbb{R}_{+}denotes the set of positive real numbers and \mathbb{C} denotes the set of complex numbers.
The Pochhammer symbol (or the shifted factorial) $(\lambda)_{\nu}(\lambda, \nu \in \mathbb{C})$ is defined, in terms of the familiar Gamma function, by

$$
(\lambda)_{\nu}:=\frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda)}= \begin{cases}1 & (\nu=0 ; \lambda \in \mathbb{C} \backslash\{0\}) \tag{1.1}\\ \lambda(\lambda+1) \ldots(\lambda+n-1) & (\nu=n \in \mathbb{N} ; \lambda \in \mathbb{C})\end{cases}
$$

